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The statistical level density is a fundamental tool for the description of many properties of atomic 

nuclei. The level density 𝜌(𝐸,𝑁, 𝑍,𝑀) of a nucleus is defined as function of the energy 𝐸, neutron 𝑁 and 
proton 𝑍 numbers, and the projection of the angular momentum 𝑀 on a laboratory-fixed coordinate system. 
The level density 𝜌(𝐸,𝑁, 𝑍,𝑀) can be presented as the inverse Laplace transformation of the partition 
function 𝑍(𝛽, 𝛼), where 𝛽 and 𝛼 = {𝛼! , 𝛼", 𝛼#} are the Lagrange multipliers. These multipliers are 
determined by the neutron 𝑁 and proton 𝑍 numbers, and the spin projection 𝑀, respectively. Within the 
grand canonical ensemble, one can apply the standard Darwin-Fowler saddle point method (SPM) for the 
inverse Laplace integration over all variables, including 𝛽, which is related to the total energy 𝐸, but for 
large excitation energy 𝑈. As it can be assumed, the temperature 𝑇 is related to the well-determined saddle 
point in the integration over 𝛽 for a finite Fermi system of large particle numbers 𝑁 and 𝑍, and the spin 
projection 𝑀. However, many experimental data also exist for low-lying excitation energies 𝑈 where such 
a saddle point does not exist. Therefore, the integral over the Lagrange multiplier 𝛽 should be carried out 
[1] more accurately beyond the standard SPM. For other variables, related to the neutron 𝑁 and proton 𝑍 
numbers, and the spin projection 𝑀, one can apply the SPM assuming that particle numbers 𝑁 and 𝑍, and 
spin 𝐼 are relatively large. In this work we have removed divergence at the critical catastrophe point at zero 
excitation energy limit, where all high-order derivatives of the entropy are zeros, using the semiclassical 
periodic-orbit theory (POT) for calculations of 𝜌(𝐸,𝑁, 𝑍,𝑀), and have derived analytical expressions for 
the spin-dependent level density 𝜌(𝐸,𝑁, 𝑍, 𝐼) for the nuclear collective rotations. 

Taking the inverse Laplace transformation of the partition function Z(𝛽, 𝛼) over 𝛽 more accurately, 
beyond the standard SPM, we have derived [1] an approximate expression for the level density, 
𝜌(𝐸,𝑁, 𝑍,𝑀) ∝ 𝑆$%𝐼%(𝑆), where 𝐼%(𝑆) is the modified Bessel function of the entropy	𝑆 at 𝜈 = 5 2⁄  for the 
MMA1 case (i) of negligibly small shell corrections, and 𝜈 = 7 2⁄  for the MMA2 case (ii) of the dominating 
shell effects. For the spin-dependent level density 𝜌(𝐸,𝑁, 𝑍, 𝐼), one obtains 𝜌(𝐸,𝑁, 𝑍, 𝐼) ∝ 𝑎ℏ&(2𝐼 +
1)𝑆$(%())𝐼%() (𝑆) Θ⁄ . The shell and isotopic asymmetry effects are taken into account through the level 
density parameter 𝑎 and nuclear moment of inertia Θ. For collective rotations one obtains 𝜌+,--(𝐸, 𝐼) ≈

(1 2⁄ ) ∫ 𝑑.
$. 𝛬	𝜌/012(𝑈3 − 𝐸2,14 , 𝛬), where 𝜌/012(𝑈+,--, 𝛬) ≡ 𝜌(𝐸,𝑀 = 𝛬) is the intrinsic level density, 𝛬 is 

the nuclear spin projection to the intrinsic axis of the coordinate system rotating together with a nucleus, 
𝑈3 = 𝐸 − 𝐸3, 𝐸3 is the background energy, 𝑈+,-- = 𝑈3 − 𝐸2,14 , 𝐸2,14 = [𝐼(𝐼 + 1) − 𝛬&] 2Θ4⁄  is the rotation 
energy and Θ4 is the moment of inertia with respect to the axis perpendicular to the symmetry axis. As the 
“parallel” moment of inertia Θ∥ is much smaller than Θ4 of the total effective moment of inertia Θ677, 	Θ677

$) =
Θ4$) + Θ∥$), we have proved analytically the well-known enhancement of the level density due to the 
collective rotations of axially deformed symmetric nuclei. For the total MMA level density 𝜌(𝐸,𝑁, 𝑍) =
∫𝑑𝑀𝜌(𝐸,𝑁, 𝑍,𝑀) we arrived at a similar expression, 𝜌(𝐸,𝑁, 𝑍) ∝ 𝑆$%𝐼%(𝑆), but with 𝜈 = 2 for the 
MMA1 case (i) and 𝜈 = 3 for the MMA2 case (ii). 
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Fig. 1 shows the inverse level density parameter 𝐾 = 𝐴 𝑎⁄  in the long Nd isotope chain with the 
particle number 𝐴 = 131 − 156. The values of 𝐾 are obtained by the least mean squares (LMS) fitting of 
our theoretical results to the experimental data on the known excitation spectra found by the sample method 
from the database, http://www.nndc.bnl.gov/ensdf. A reasonable agreement with these experimental data 
are obtained accounting for the shell and isotopic asymmetry effects with the help of the semiclassical POT 
by using the only one inverse level density parameter 𝐾, having a clear physical meaning, in the LMS 
fitting. As seen from Fig. 1, the results for 𝐾 for isotopes of Nd as functions of the particle number 𝐴 are 
characterized by a very pronounced saw-toothed behavior with alternating low (for odd nucleus) and high 
𝐾 values  (for even nucleus). We obtained values of 𝐾 for low excitation energy range which are essentially 
different from those for neutron resonances 𝐾 ≈ 10 MeV. We have found significant shell effects in the 
MMA level densities mainly because of dominating contributions from MMA2b (ii) approach, which is the 
MMA2 (ii) but for small shell corrections and for their large derivatives over the chemical potential, in the 
nuclear low-energy states range. The interparticle interaction beyond the mean field approach is taken into 
account approximately in average through the extended Thomas-Fermi component of the level density 
parameter 𝑎, proportional to the semiclassical POT level density. Accounting for the strong pairing effect 
(two magenta points for 140,142Nd in Fig. 1) we showed that pairing correlations lead to a smoothing of the 
inverse level density 𝐾(𝐴) behavior as function of the particle number 𝐴.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fig. 1. (a) Inverse level-density parameter 𝑲(with errors bars) for Nd isotopes is shown as function of 
the particle number 𝑨 within a long chain 𝑨 = 𝟏𝟑𝟏 − 𝟏𝟓𝟔. The close black dotted points are the results 
of the  MMA approach taken with the smallest relative error parameter, 𝝈𝟐 ∝ 𝝌𝟐 , normalized to the 
number of points, in the LMS fitting among all MMAs (MMA1, MMA2a, and MMA2b), including 
MMA2a which is MMA2(ii) but with the numerical shell corrections taken from Ref. [2]. (b) The 
relative shell correction energies , 𝜹𝑬𝑨 𝑬.⁄  [2], in units of the background energy 𝑬. ≈ 𝑬𝑬𝑻𝑭 per one 
particle, 𝑬𝑬𝑻𝑭 is the smooth energy POT component of the extended Thomas-Fermi model. The 
chemical potential is 𝝀 = 𝟒𝟎 MeV. 
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